Announcements

e Problem Set 7 was due at 5:30 PM. Solutions are available on the
course website.

Congratulations - you're done
with CS103 problem sets!

 Problem Set 6 has been graded, I'm calibrating some questions with
the CAs. Grades will be released on Gradescope tonight.

Please evaluate this course on Axess.
Your feedback really makes a difference.

Final Exam Logistics

Our final exam will be on Saturday, August 17% from
7:00 - 10:00 PM in Hewlett 201 (same as the lectures
and the midterm).

Exam is the same format as the midterm: 3 hours, open
notes, closed communication with other humans/Al.

If you have OAE accommodations, you should have
heard from us already about exam room and time
logistics.

The exam is cumulative and covers Lectures 00 - 16 as
well as PS1 - PSe6.

Best of luck on the exam - you’ve got this!

Take a minute to reflect on your journey.

Set Theory
Power Sets
Cantor’s Theorem
Direct Proofs
Parity
Proof by Contrapositive
Proof by Contradiction
Modular Congruence
Propositional Logic
First-Order Logic
Logic Translations
Logical Negations
Propositional Completeness
Vacuous Truths
Perfect Squares
Tournaments
Functions
Injections
Surjections
Involutions
Monotone Functions
Bijections

Cardinality
Graphs
Connectivity
Independent Sets
Vertex Covers
Graph Complements
Dominating Sets
Bipartite Graphs
The Pigeonhole Principle
Ramsey Theory
Mathematical Induction
Loop Invariants
Complete Induction
Formal Languages
DFAs
Regular Languages
Closure Properties
NFAs
Subset Construction
Kleene Closures
Regular Expressions
State Elimination

Distinguishability
Myhill-Nerode Theorem
Nonregular Languages
Context-Free Grammars
Brzozowski’s Theorem

Turing Machines

Church-Turing Thesis
TM Encodings
Universal Turing Machines
Self-Reference
Decidability
Recognizability
Self-Defeating Objects
Undecidable Problems
The Halting Problem
Verifiers
Diagonalization Language
Complexity Class P
Complexity Class NP
P < NP Problem
Polynomial-Time Reducibility
NP-Completeness

You’'ve done more than just check
a bunch of boxes off a list.

You've given yourself the foundation
to tackle problems from all over
computer science.

From CS255

A Shannon cipher is a pair £ = (E, D) of functions.

e The function E (the encryption function) takes as input a key k and a message m (also
called a plaintext), and produces as output a ciphertext c. That is,

¢ = E(k,m),
and we say that ¢ is the encryption of m under k.

e The function D (the decryption function) takes as input a key k and a ciphertext ¢, and
produces a message m. That is,

m = D(k,c), Kinda sorta like a left

and we say that m is the decryption of ¢ under k. inverse!

e We require that decryption “undoes” encryption; that is, the cipher
correctness property: for all keys k& and all messages m, we have

Dk, E(k, m)) =m. [

To be slightly more formal, let us assume that K is the set of all keys (the key space), M is the
set of all messages (the message space), and that C is the set of all ciphertexts (the ciphertext
space). With this notation, we can write:

E:KxM-—=C,
D:KxC—= M.

Also, we shall say that £ is defined over (KC, M,C).

| Strong triadic closure] ‘ From CS124 I
A

If a node Q has two strong tjes to nodes Y and Z, there is an edge between Y and Z

—s—e)y (——

A New definitions on
graphs!

What do graphs with
these properties look

like?
S 3 Transform some
s object to make it

closed under some
operation!

Tokenization in NLTK

Bird, Loper and Klein (2009), Natural Language Processing with Python. O’Reilly

From CS124

>2>> Lexl

= 'That U.S.A. poster-print costs $12.40...°

>>>/ﬁittern A € # set flia\

AT

SIS e (6o

[LA=E] e) #

| \w+(-\w+)* #
| \$?2\d+(\.\d+)?%? # currency
| %o s % # ellipsis

#

BoE Witk
[’That’,

.regexp_tok
il | 5. TR

to allow verbose regexps

abbreviatjions, e.g. U.S.A.
words with optional internal hyphens

and percentages, e.g. $12.40, 82%

these ifj separate tokens; includes], [

'Roster-print’, ’costs’, '$12.40°, ’...’]

&ize(text , pattern)

N

It's a big regex!

Describing the
world in set
theory!

From
CS237A

Plar pace

-(Let R(q) € W denote set of points in the world occupied by robo

when in configuration g
Robot in collision e R(g) N0 # @

~

t

«_ Accordingly, free space is defined as: C¢.. = {q € C|R(q) N 0 = 0},

r
L

Path planning problem in C-space: compute a continuous path:
- 7:[0,1] = Cpree, with 7(0) = g; and 7(1) = gg

~

S

—

Model paths as
functions!

It's a CFG!

T - (FE E +
)
S_)E int
E--T;
Start"‘E—>'T+E
T —-int
T = - (E) !

It’'s an automaton
derived from a CFG!

From CS143

E—--T+E

T —-int

(

Search problems ‘From cS221 I

P Definition: search problem

@tates: the set of states)

Sitart € States: starting state
Actions(s): possible actions from state s

Succ(s, a,): where we end up if take action g In state s
Cost(s, a): cost for taking action a in state s

JsEnd(s): whether at end Y
» Succ(s,a) = T'(s,a, 3’;\
« Cost(s,a) = Reward(s,a,s’) \

It's a
DFA!
CSsS221 / Autumn 2018 / Liang

pronounced “big-oh of ...” or sometimes “oh of ...”

/

O(...) means an upper boun

e Let T(n), g(n) be functions of positive integers.

From CS161

* Think of T(n) as being a runtime: positive and increasing in n.

 We say “T(n) is O(g(n))” if g(n) grows at least as fast as
T(n) as n gets large.

* Formally,

" T(n) = 0(g(n)))
=

dc,ng > 0 s.t. Vn = n,,

 0=T(n)<c-gn)

It's FOL and
functions!

‘ From CS224W I

f Graph G(V, E) has expansion a: if V'S c V-
V\S])

»

g # of edges leaving S = a- min(|S
Or equivalently:

#edges leaving §

2 =min

ScV First-order

definitions on
graphs!

Set difference and
cardinality!

Typed lambda calculus

From CS242

To understand the formal concept of a type system, we’re going to extend our lambda calculus from last week
(henceforth the “untyped” lambda calculus) with a notion of types (the “simply typed” lambda calculus). Here’s the

essentials of the language:

/ Type 7 ::

Expression e ::

\ Binop & ::=

int
T — T2

T
n

e @ e
Alz:7) . e

€1 €2

+ =1/

integer \

function

variable

integer

binary operation
function

application

N

It's a
CFG!

_/

First, we introduce a language of types, indicated by the variable tau (7). A type is either an integer, or a function from
an input type 7; to an output type 75. Then we extend our untyped lambda calculus with the same arithmetic language

from the first lecture (numbers and binary operators)*. Usage of the language looks similar to before:

Definitions in From CS166
terms of
strings!

he Anatomy of a Suffix Tree

T$ is a string w such | §
that there are
characters a # b 0 $
where wa and wb are

\Substrings of T$.)

« Edge case: the empty
string is always
considered branching.

&fA branching word iD ()

m

:,.--'
P

m wun

mwn 3
oF
“Vro VS0 WnoD o

Vro VS MDW0NSoDO
ol
@mmm:

“*® 0 O

« Theorem: The suffix
tree for a string T has @
an internal node for a
string w if and only if
w 1s a branching word nonsenses$

in I'$. 012345678

"
|

Q

Finite State Machines
From CS144
event causing state transition
actions taken on state transition
— e T —

event
actions

e Represent protocols using state machines

- Sender and receiver each have a state | It's @ generalization of
DFAS!

- Start in some initial state

- Events cause each side to select a state

e Transition specifies action taken
- Specified as events/actions
- E.g., software calls send/put packet on network

- E.g., packet arrives/send acknowledgment

From CS168

Reducibility!

Bv_definitiof. we need to_output v if and onlv if
y € S. That i, answering membership queries reduces to solving the Heavy Hitters problem.

BYthe“memb D Propicn We 111ca T TASK O PTCPTOCCSSITIE & SCt S L0 alISWeT (UCTIC

? O

of the form “is y € S”7 (A hash table is the most common solution to this problem.) It is
intuitive that vou cannot correctly answer all membership queries for a set S without storing

S (thereby using linear, rather than constant, space) — if you throw some of S out, you
might get a query asking about the part you threw out, and you won't know the answer.
It’s not too hard to make this idea precise using the Pigeonhole Principle.®

A

—

A Myhill-Nerode-
style argument!

‘ From CS154 I

Kolmogorov Complexity (1960’s)

Definition: The shortest description of x, denoted as
d(x), is the lexicographically shortest string <M, w»>
such that M(w) halts with only x on its tape.

Definition: The Kolmogorov complexity of x, denoted

as K(X), 1S |d(X)| Using Turing machines

to define intrinsic
information content!

You've given yourself the foundation
to tackle problems from all over
computer science.

There’s so much more to explore.
Where should you go next?

Course Recommendations

Theoryland

CS154 A
Phil 151
Phil 152
Math 107]
Math 108 -
Math 113
Math 120
Math 161 |

Math 152 } Number Theory

} Complexity

> Computability

> Graphs

> Functions

} Set Theory

Applications
C5124) Languages /
CS].4:3 Automata
CSlol

> Graphs

CS224W)
CS242
CS243 |/ ,

> Functions
CS246
CS251
CS255)

Final Thoughts

A Huge Round of Thanks!

There are more problems to
solve than there are programs
capable of solving them.

There is so much more to explore and so
many big questions to ask - many of
which haven't been asked yet!

Theory

Practice

You now know what problems we can solve,
what problems we can't solve, and what
problems we believe we can't solve
efficiently.

Our questions to you:

What problems will you choose to solve?
Why do those problems matter to you?
And how are you going to solve them?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

